IMPERIAL

TensorLLM: Tensorising Multi-Head Attention for Enhanced Reasoning and Compression in LLMs

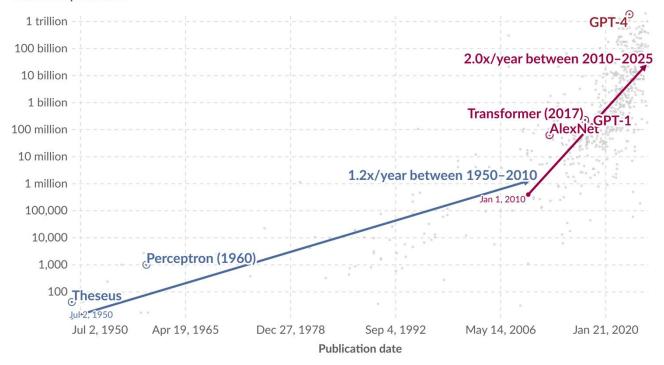
Yuxuan Gu, Wuyang Zhou, Giorgos Iacovides, Danilo Mandic Imperial College London

Why compression?

Exponential growth of parameters in notable AI systems

Parameters are variables in an AI system whose values are adjusted during training to establish how input data gets transformed into the desired output; for example, the connection weights in an artificial neural network.

Number of parameters



Data source: Epoch (2025)

OurWorldinData.org/artificial-intelligence | CC BY

Note: Estimates are based on Al literature with uncertainty up to a factor of 10. The regression lines show a sharp rise in parameters since 2010, driven by the success of deep learning methods that leverage neural networks and massive datasets.

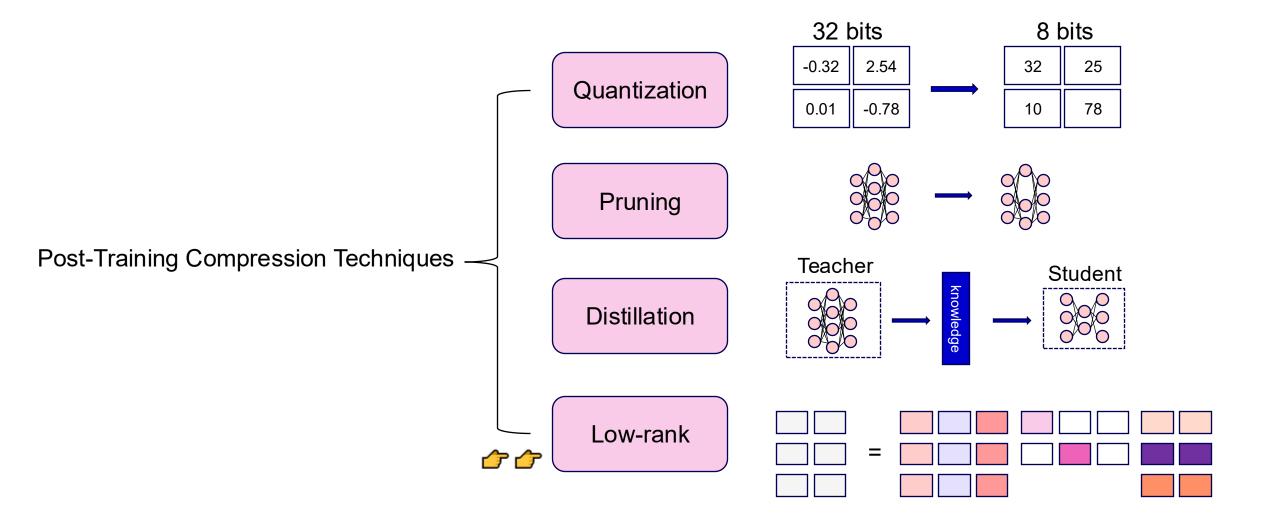
LLMs are too big for edge devices

Model	Size (FP16)	Typical Edge Storage	Deployable on Edge?
LLaMA-2 7B	14 GB	8–32 GB	Limited devices only
GPT-3	350 GB	-	Not deployable
PaLM 2 (Medium)	30 GB	8–32 GB	Too large
LLaMA-3 8B	16 GB	8–32 GB	Quantised only

Most edge devices don't have enough memory or storage to host these models directly.

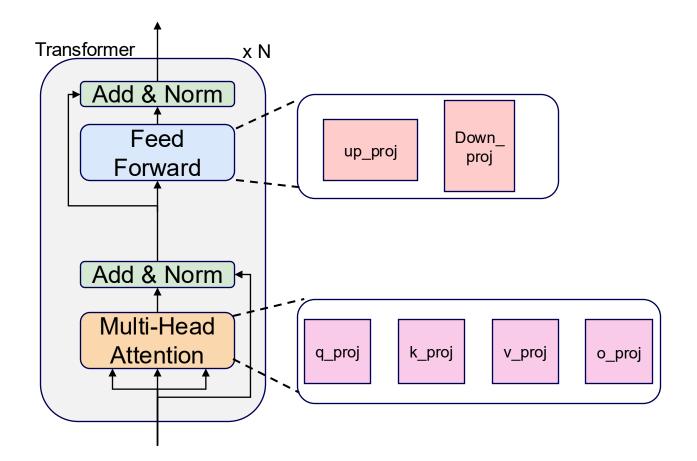
Brute-force, data-driven engineering is becoming increasingly unsustainable.

How to compress?



Imperial College London 4 23/12/2025

Over-parameterisation in LLMs

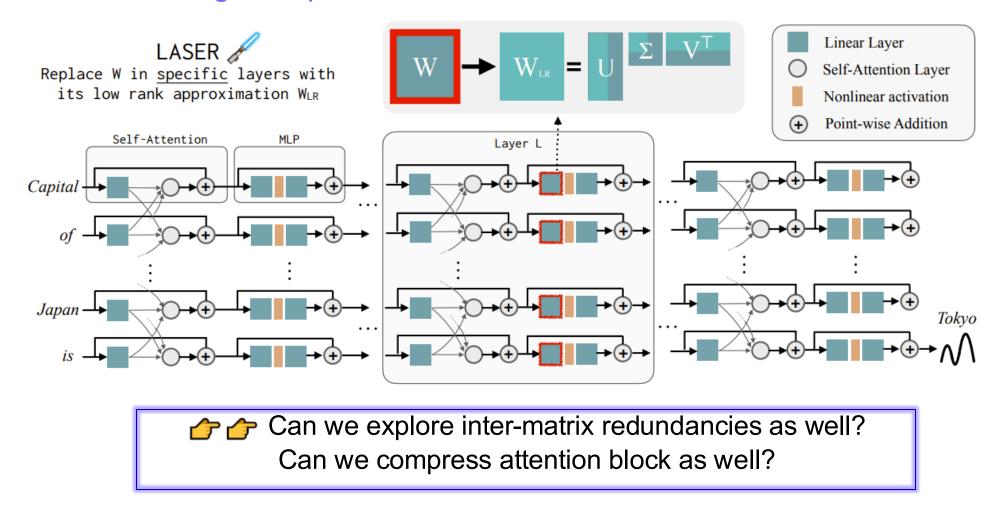


Model	Projection	Weight Shape		
	q_proj	4096 × 4096		
	k_proj	4096 × 4096		
11 aMA 27D	v_proj	4096 × 4096		
LLaMA-27B	o_proj	4096 × 4096		
	up_proj	4096 × 11008		
	down_proj	11008 × 4096		

Some of these weights might be redundant

Related work: LASER

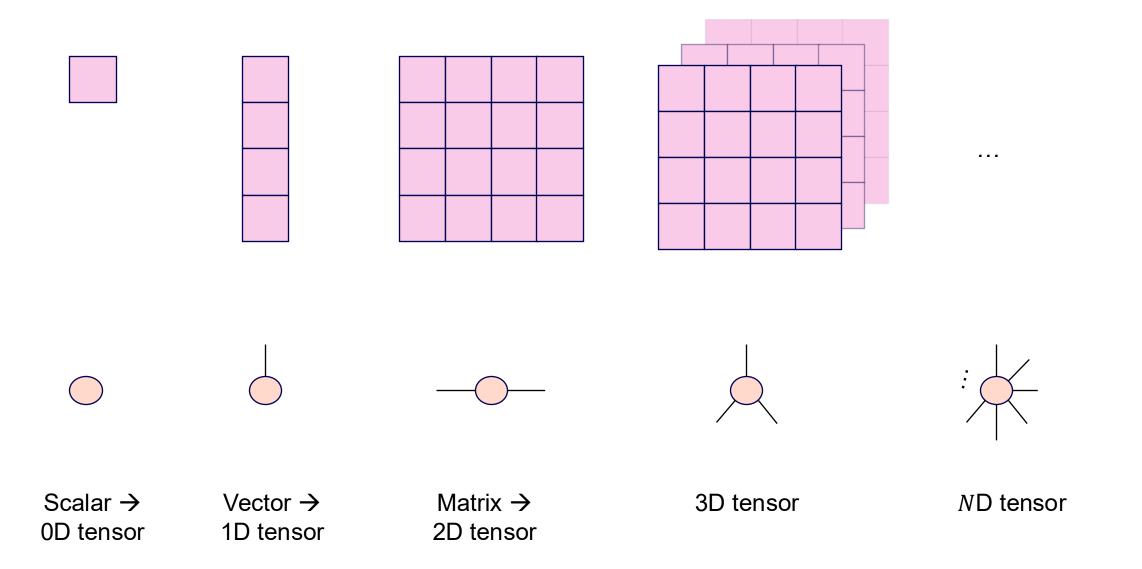
SVD for Post-Training Compression



Sharma, P., Ash, J.T. and Misra, D., The Truth is in There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction. ICLR 2024

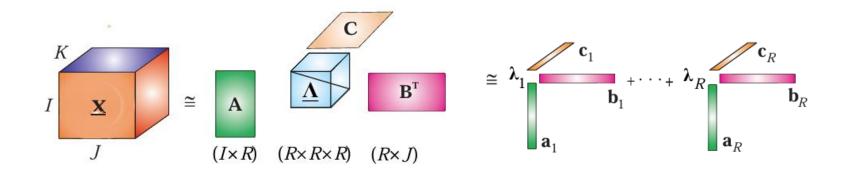
Imperial College London 6 23/12/2025

Tensor preliminaries



Tensor preliminaries

Canonical Polyadic Decomposition (CPD)



$$\mathcal{X} = \sum_{r=1}^{R} \lambda_r \, \boldsymbol{u}^{(1)} \circ \boldsymbol{u}^{(2)} \circ \cdots \circ \boldsymbol{u}^{(N)} = \mathcal{G} \times_1 \, \boldsymbol{U}^{(1)} \times_2 \boldsymbol{U}^{(2)} \times_N \boldsymbol{U}^{(N)}$$

Assume $X \in \mathbb{R}^{I \times I \times \cdots \times I}$ is an order-*N* tensor. Each mode has rank *R*, where $R \ll I$.

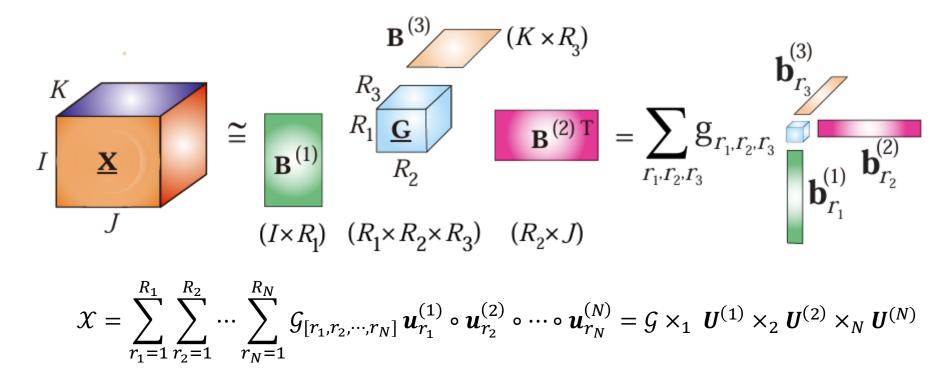
Storage complexity: $\mathcal{O}(I^N) \rightarrow \mathcal{O}(R + NIR) \approx \mathcal{O}(NIR)$

Cichocki, A., Lee, N., Oseledets, I.V., Phan, A.H., Zhao, Q. and Mandic, D., 2016. Low-rank tensor networks for dimensionality reduction and large-scale optimization problems: Perspectives and challenges part 1. arXiv preprint arXiv:1609.00893.

Imperial College London 8 23/12/2025

Tensor preliminaries

Tucker Decomposition (TD)



Assume $\mathcal{X} \in \mathbb{R}^{I \times I \times \cdots \times I}$ is an order-N tensor. Each mode has rank R, where $R \ll I$. Storage complexity: $\mathcal{O}(I^N) \to \mathcal{O}(R^N + NIR)$

Cichocki, A., Lee, N., Oseledets, I.V., Phan, A.H., Zhao, Q. and Mandic, D., 2016. Low-rank tensor networks for dimensionality reduction and large-scale optimization problems: Perspectives and challenges part 1. arXiv preprint arXiv:1609.00893.

Imperial College London 9 23/12/2025

Design intuition:

- Attention heads within the same layer capture the same level of patterns
- Different attention heads within the same layer learn different specialised knowledge

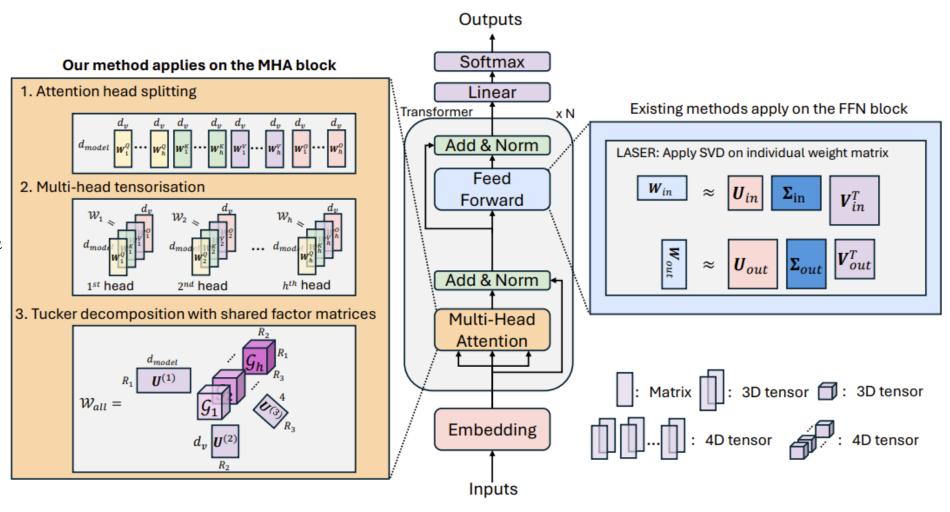
Can we improve the reasoning capabilities of LLMs by enforcing a shared higher-dimensional subspace among the weights of multiple attention heads within a single transformer layer?

Gu, Y., Zhou, W., Iacovides, G. and Mandic, D., 2025. TensorLLM: Tensorising Multi-Head Attention for Enhanced Reasoning and Compression in LLMs. *IEEE International Conference on Neural Networks (IJCNN) 2025.*

 $\mathbb{R}^{d_{model} \times h \cdot d_h}$ $\to \mathbb{R}^{d_{model} \times h \times d_h}$

 $\mathcal{W}_{all} \in \mathbb{R}^{d_{model} \times d_h \times 4 \times h}$

 $\mathcal{W}_{all} = \mathcal{G}_{all} \times_1 \mathbf{U}^{(1)}$ $\times_2 \mathbf{U}^{(2)} \times \mathbf{U}^{(3)} \times_4 \mathbf{I}$



Gu, Y., Zhou, W., Iacovides, G. and Mandic, D., 2025. TensorLLM: Tensorising Multi-Head Attention for Enhanced Reasoning and Compression in LLMs. *IEEE International Conference on Neural Networks (IJCNN) 2025.*

Original pretrained vs. Denoised Weights

		Model Name							
Dataset		RoBERTa		GP	Г-Ј	LLaMA2			
		Original	Ours	Original	Ours	Original	Ours		
	Acc	6.1	7.33	19.6	20.15	16.5	18.44		
HotPotQA	Loss	10.99	10.00	3.40	4.49	3.15	9.80		
	CR	-	1.12	-	247.30	-	3.54		
	Acc	50.0	50.45	50.2	58.94	59.3	66.75		
FEVER	Loss	2.5	1.47	1.24	1.02	1.02	1.01		
	CR	-	3.74	-	14.69	-	3.54		
D: a a	Acc	64.5	72.57	75.6	81.18	85.0	86.61		
Bios Profession	Loss	4.91	6.64	4.64	4.57	4.19	4.54		
	CR	-	8.78	-	74.68	-	3.54		
BigBench- WikidataQA	Acc	28.0	32.72	51.8	68.81	59.5	60.37		
	Loss	9.07	8.72	3.52	2.63	4.19	2.38		
	CR	-	2.52	-	46.77	-	5.81		

Gu, Y., Zhou, W., Iacovides, G. and Mandic, D., 2025. TensorLLM: Tensorising Multi-Head Attention for Enhanced Reasoning and Compression in LLMs. *IEEE International Conference on Neural Networks (IJCNN) 2025.*

Imperial College London 23/12/2025

Combine with other methods

	Model Name									
Dataset		RoBERTa			GPT-J			LLaMA2		
		Case 1	Case 2	Case 3	Case 1	Case 2	Case 3	Case 1	Case 2	Case 3
			İ	(Ours)			(Ours)			(Ours)
H-4P-4OA	Acc	6.7	5.24	7.05	19.5	19.62	19.91	17.2	18.88	19.22
HotPotQA	Loss	10.53	8.60	9.87	3.39	5.08	5.07	2.97	9.33	9.99
FEVER	Acc	52.3	53.6	55.23	56.2	55.59	58.98	64.5	65.13	66.39
FEVER	Loss	1.76	1.18	2.61	1.27	1.28	1.39	0.91	1.11	1.33
Bios Profession	Acc	72.5	71.14	72.51	82.1	81.28	82.52	86.7	86.07	87.07
	Loss	6.44	6.62	7.42	4.91	4.61	4.52	4.05	4.20	4.05
BigBench-WikidataQA	Acc	30.7	34.49	37.40	65.9	65.68	68.20	62.0	61.21	61.78
	Loss	7.69	8.25	7.86	2.86	2.89	2.59	2.31	2.35	2.34

Case 1: LASER was applied to 1 matrix in the FFN block

Case 2: LASER was applied to all matrices in the FFN and MHA blocks

Case 3: Our method was applied to the MHA block; LASER was applied to matrices in the FFN block

Gu, Y., Zhou, W., Iacovides, G. and Mandic, D., 2025. TensorLLM: Tensorising Multi-Head Attention for Enhanced Reasoning and Compression in LLMs. *IEEE International Conference on Neural Networks (IJCNN) 2025.*

Ablation study: whether to stack 4 matrices together

		GPT-J						
Dataset		Original	\mathbf{W}^Q	\mathbf{W}^K	\mathbf{W}^V	\mathbf{W}^O	Ours	
HotPotQA	Acc	19.6	19.19	19.25	19.70	19.62	20.15	
	Loss	3.4	4.45	4.45	4.43	4.44	4.49	
FEVER	Acc	50.2	54.41	53.40	55.86	56.07	58.94	
	Loss	1.24	1.22	1.22	1.23	1.15	1.02	
Bios Profession	Acc	75.6	76.06	74.97	79.39	79.71	81.18	
	Loss	4.64	4.54	4.59	4.46	4.41	4.57	
BigBench- WikidataQA	Acc	51.8	49.72	51.01	48.82	48.87	68.81	
	Loss	3.52	3.66	3.58	3.69	3.69	2.63	

Gu, Y., Zhou, W., Iacovides, G. and Mandic, D., 2025. TensorLLM: Tensorising Multi-Head Attention for Enhanced Reasoning and Compression in LLMs. *IEEE International Conference on Neural Networks (IJCNN) 2025.*

Imperial College London 23/12/2025

IMPERIAL



Thank you!

Appendix

Tucker decomposition techniques

$$\mathcal{W}_{all} = \mathcal{G}_{all} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \times \mathbf{U}^{(3)} \times_4 \mathbf{I}$$

$$\min_{\mathcal{G}, \{U^{(i)}\}_{i=1}^3} \frac{1}{2} \| \mathcal{X} - \mathcal{G}_{all} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \times \mathbf{U}^{(3)} \times_4 \mathbf{I} \|_F^2 \text{, subject to } U^{(n)^T} U^{(n)} = I_{R_N} \ \forall \ n \in [1, N]$$

Algorithm 1 Higher-Order Singular Value Decomposition (HOSVD)

Input: Tensor $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$, target ranks R_1, R_2, \dots, R_N **Output:** Core tensor \mathcal{G} and factor matrices $\mathbf{U}^{(1)}, \mathbf{U}^{(2)}, \dots, \mathbf{U}^{(N)}$

for n=1 to N do

Unfold tensor \mathcal{X} along mode n: $\mathbf{X}_{(n)} \in \mathbb{R}^{I_n \times (I_1 \cdots I_{n-1} I_{n+1} \cdots I_N)}$

Compute the top R_n left singular vectors of $\mathbf{X}_{(n)}$

Set $\mathbf{U}^{(n)} \in \mathbb{R}^{I_n \times R_n} \leftarrow$ the resulting matrix

end for

Compute core tensor:

$$\mathcal{G} \leftarrow \mathcal{X} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \cdots \times_N \mathbf{U}^{(N)}$$

return $\mathcal{G}, \mathbf{U}^{(1)}, \mathbf{U}^{(2)}, \cdots, \mathbf{U}^{(N)}$

Algorithm 2 Higher-Order Orthogonal Iteration (HOOI)

Input: Tensor $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$, target ranks R_1, R_2, \dots, R_N **Output:** Core tensor \mathcal{G} and factor matrices $\mathbf{U}^{(1)}, \mathbf{U}^{(2)}, \dots, \mathbf{U}^{(N)}$ Initialise $\mathbf{U}^{(n)} \in \mathbb{R}^{I_n \times R}$ for $n = 1, \dots, N$ using HOSVD

repeat

for n=1 to N do

 $\mathbf{Y} \leftarrow \mathcal{X} \times_1 \mathbf{U}^{(1)} \cdots \times_{n-1} \mathbf{U}^{(n-1)} \times_{n+1} \mathbf{U}^{(n+1)} \cdots \times_N \mathbf{U}^{(N)}$

 $\mathbf{U}^{(n)} \leftarrow R_n$ leading left singular vectors of $\mathbf{Y}_{(n)}$

end for

until variations of reconstruction error reaches a certain threshold $\mathcal{G} \leftarrow \mathcal{X} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \cdots \times_N \mathbf{U}^{(N)}$

return $\mathcal{G}, \mathbf{U}^{(1)}, \mathbf{U}^{(2)}, \dots, \mathbf{U}^{(N)}$

Refinement